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We report measurements of the thermoelectric power �TEP� for a series of Pb1−xTlxTe crystals with x=0.0 to
1.3%. Although the TEP is very large for x=0.0, using a single-band analysis based on older work for dilute
magnetic alloys we do find evidence for a Kondo contribution of 11–18 �V /K. This analysis suggests that TK

is �50–70 K, a factor 10 higher than previously thought.
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The traditional “spin” Kondo effect occurs in a nonmag-
netic host metal containing a small concentration of mag-
netic impurities. Here the antiferromagnetic exchange inter-
action �J� between the local magnetic moment and the
conduction electrons gives rise to a −�J�3 log T term in the
temperature �T� dependent electrical resistivity ��T� and
other unusual properties1–3 including an anomalously large
and T-dependent thermoelectric power �TEP or S�. Below the
Kondo temperature �TK� which can be extremely small, the
spin of the impurity is compensated by a cloud of
conduction-electron spins extending over distance
��vF /kBTK, where vF is the Fermi velocity of the host
metal. There is a “triple peak” in the impurity density of
states �DOS�,3 with two side lobes derived from the spin-
split virtual bound state and a narrow peak of width kBTK at
the Fermi energy. It is thought4 that a similar description
applies to the charge Kondo effect discussed here.

Experimental5 and theoretical4 evidence has been reported
for a charge Kondo effect in Pb1−xTlxTe crystals with x
�0.3%. It arises because Tl+ and Tl3+ ions both have filled
shells, i.e., 6s2 and 6s0, that can be more stable than the 6s1

state of Tl2+. So when Tl is in an environment favorable for
divalency there can be two degenerate, or nearly degenerate,
nonmagnetic charge states Tl+ and Tl3+ that can be described
by the Anderson model and can also give rise to a Kondo
effect.4 The resulting charge fluctuations are thought to be
important for superconductivity4–6 in Pb1−xTlxTe. In the
present Rapid Communication we report TEP data for single
crystals of Pb1−xTlxTe and discuss evidence for an anoma-
lous contribution associated with a charge Kondo effect.

The crystals of Pb1−xTlxTe with x=0, 0.2, 0.3, 0.6, 1.1,
and 1.3% were from the same preparation batches studied
previously.5–7 Their thermopower was measured using CuBe
wires,8 whose TEP was measured separately relative to a
cuprate superconductor and found to be small with a maxi-
mum of 0.2 �V /K near 30 K. Initially the temperature gra-
dient, �T, was measured using a constantan-chromel thermo-
couple made of 25 �m diameter wires, and glued to the
mm-sized crystals with GE varnish, but for the data reported
here very small diode thermometers8 were used. These were

less straightforward to mount, but gave more reliable mea-
surements of �T, especially at low T where the sensitivity of
the thermocouple decreases. The diodes were also attached
to the sample using GE varnish, and the distance between
them, measured to �3 to 5% using a binocular microscope,
is the main source of error in the TEP.

For many dilute metallic alloys ��T� approximately obeys
Matthiessen’s rule which states that the contributions � j aris-
ing from two or more different scattering mechanisms
�j=0,1 ,2. . .� are simply additive. It generally holds reason-
ably well when T is comparable to the Debye temperature
��D� or when the impurity resistivity is smaller than that
caused by electron-phonon scattering, but at lower T there
can be significant deviations. One probable reason is that
conservation of crystal momentum �k� is less strict in an
alloy because the finite electron mean-free path limits the
size of electron wave packets.9 The equivalent Nordheim-
Gorter �NG� rule10 for combining contributions Sj

d to the to-
tal electron diffusion TEP Sd from different scattering
mechanisms in the same band is

Sd =
� jSj

d� j

� j� j
. �1�

It relies on Matthiessen’s rule being obeyed and on the
scattering being effectively elastic, which is only true for
T	�D or in the residual resistivity ��res� region. Resistivity
data7 for Pb1−xTlxTe crystals from the same preparation
batches are shown in Fig. 1. Matthiessen’s rule is obeyed
reasonably well for x�0.6% for all T and for x=0.3% for
T
150 K. The insert shows that �res is small for x�0.2%
but then increases linearly with x for x�0.3%. This is con-
sistent with other evidence that valency skipping sets in near
x=0.3% �Ref. 5� and, together with Matthiessen’s rule, im-
plies that there are no gross changes in electronic structure at
higher x. The linearity also suggests that the Tl impurities act
as independent scattering centers for x�0.3%. TEP data
measured for the six samples are shown in Fig. 2. All Tl-
doped samples have S�100–140 �V /K at 300 K with
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similar slopes and a positive curvature at lower T, while the
pure PbTe sample has a larger TEP, 300 �V /K at 300 K,
and a negative curvature.

Analysis of various Kondo alloys �e.g., AuFe, AuMn, and
AuCr� �Refs. 11 and 12� suggests that Sd in Eq. �1� contains
three terms, S0, S1 and SK. S0 arises from the energy depen-
dence of the potential scattering term V in the Kondo Hamil-
tonian, and is related to the energies and widths of the 3d
virtual bound states. It is linear in T and in Eq. �1� is
weighted by �res��0. The electron-phonon scattering term,
S1, is also expected to be linear in T both for T	�D /5 and
T
�D /10 but with a factor of 3 smaller slope at low T. For
PbTe, heat-capacity data6 give �D=168 K. S0, S1, �0, and �1
are often calculated using first-order perturbation theory,
while SK, the Kondo TEP contribution, arises from higher
order scattering processes involving noncanceling Fermi fac-
tors. It is also weighted by �0 in Eq. �1�. A broad peak in Sd

is often observed near the Kondo temperature TK, and often
used to estimate TK.3,13 However it has been argued that SK
could be constant for T	TK,11,14 as predicted
by high T perturbation theory2 and that the fall above the
peak is caused by the other T-dependent terms in Eq. �1�.
For T�0.1–0.15TK,14 SK falls to zero as T1, and fits
SK=AT / �T+0.35TK� for T�TK.

In view of the above discussion, we expect SK to be con-
stant or to fall slowly with T above a cutoff temperature
T0
TK, and so above T0 Eq. �1� gives

S =
�T�0 + �T�1 + ��0

�0 + �1�T�
�2�

where �, �, and � are independent of x and T. Fits to Eq. �2�
were made from 300 K to T0=90, 70, 50, or 30 K, with �, �
and � as free parameters and �0 and �1�T� obtained by fitting
the data in Fig. 1 to �=A+BT+CT2. Values of �, �, and �
and A, B, and C are given in Table I. T0=70 K gave slightly
better fits. Fits from 150 to 70 K gave similar results and for
x=0.3% we used this range because of the curvature in ��T�
shown in Fig. 1 for this sample. Below 70 K, SK�T� was
obtained from Eq. �2� by using the formula
SK�T�=Smeas� /�0−�T−�T�1 /�0 and is shown in the main
part of Fig. 3�a�. Our fitting procedure should give a constant
value for SK above 70 K. The variations seen in Fig. 3�a�
arise from residual errors in the fits multiplied up by � /�0
and are only a few times the noise level.

For an isotropic parabolic band with Fermi energy
EF, ���2kB

2 / �eEF� for T	�D /5 and �2kB
2 / �eEF� for

T��D /10,10,16 i.e., T�17 K for PbTe. The � values in
Table I give EF between 73 to 160 meV so their sign and
magnitude are reasonably consistent with EF being measured
relative to the bottom of the � band,7 despite the fact that the

TABLE I. Fitting parameters, A, B, and C, for ��T� and �, �, and �, for TEP.

x%
A

m� cm
B

m� cm /K
C

m� cm /K2
�

�V /K2
�

�V /K2
�

�V /K

0.3 0.2017 1.080�10−3 9.29�10−6 −0.581 0.446 14.3

0.6 0.4124 2.315�10−3 3.37�10−6 −0.362 0.682 11.5

1.1 0.7371 3.343�10−3 5.97�10−7 −0.211 0.837 12.1

1.3 0.8472 3.640�10−3 −2.6�10−8 −0.211 0.947 17.7
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FIG. 1. �Color online� resistivity vs temperature for Pb1−xTlxTe
crystals �Ref. 7� from the same preparation batches as those studied
here, values of x given in %. The insert shows residual resistivity vs
x for all crystals measured, ��T� data for all x values in the insert
are given in Ref. 7.
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FIG. 2. �Color online� measured values of the TEP for
Pb1−xTlxTe crystals with x=0.0 and 0.2% left-hand scale and
x=0.3, 0.6, 1.1, and 1.3% right-hand scale. The inset shows the
weighted Kondo contribution, SKW�SK�0 /��T� for the values of
x�%� shown.
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hole pockets are actually ellipsoidal. But the changes of �
with x are not understood since Hall data6 suggest a slight
increase in hole concentration, i.e., in EF with x. The mag-
nitudes of � are similar to � but of opposite sign correspond-
ing to higher energy holes being more strongly scattered by
the Tl impurities. Within a Kondo picture this arises from the
asymmetry of the Friedel-Anderson virtual bound states de-
scribing the valency fluctuations, but a low value of EF for
the � band could also affect �. Finally the values of � rang-
ing from 11 to 18 �V /K are similar to those associated with
the traditional Kondo effect and the asymmetric Anderson
model.

Fits to Eq. �2� for the x=0.0 and 0.2% samples were not
good and are not shown. As shown in Fig. 1 for these two
samples �res values are very low and ��T� much more curved
than for x�0.3%. These differences and Hall data6 suggest
that the L band dominates electronic transport for low x
while for x�0.3% the � band plays a leading role.5,7 The
TEP of the 0.2% crystal varies as AT between 40 and 100 K
with A=0.2 �V /K2 but rises sharply at higher T. This value
of A is reasonably compatible with EF=200 meV obtained
from analysis of Hall data6 but the strong increase at higher
T is not understood. The deviations from linearity for
x=0.2% shown in Fig. 3�b� are ascribed to the gradual onset
of phonon drag below 40 K. This is considerably lower than
for most metals where it is usually ��D �Ref. 10� and may
arise because both the L and � hole pockets have small
Fermi wave vectors �kF�. So electron-phonon scattering

within a pocket will be suppressed to lower T until typical
phonon wave vectors ��T /�D��� /a�, where a is the lattice
spacing, become smaller than 2kF. We cannot assume that
phonon drag corrections for the � band, i.e., x�0.3%, will
be similar to those for x=0.2%. Perhaps the only way to
obtain the phonon drag term for x�0.3% is to suppress su-
perconductivity by applying a magnetic field and measure to
much lower T where it will eventually vary as T3. Below
T�8 K the raw data in Fig. 3�b� show an approximately
T-linear, and x-independent decrease that is typical of the
Kondo effect for T�0.1–0.2 TK.14 However according to
the preceding analysis the �T terms shown by the dashed
lines in Fig. 3�b� are still present at low T. They should be
subtracted to obtain SK�T� and this spoils the x independence
to some extent.

We estimated TK using two methods. The first one is
based on the widely held view3,13 that there is an
x-independent peak in the TEP at TK in dilute magnetic al-
loys, where the host metal has a very small TEP. If the TEP
of the PbTe host metal and S0 were both small then we would
measure a weighted value SKW�SK�0 /�. Plots of SKW found
in this way, using the SK�T� data in Fig. 3 are shown in the
insert to Fig. 2. We see that there are indeed broad peaks near
60 K for x=0.6, 1.1, and 1.3%. The second method is based
on the empirical law SK=AT / �T+0.35TK� �Ref. 14� for
which plots of T /SK vs T give a straight line extrapolating to
SK=0 at −0.35TK. As shown in the insert to Fig. 3�a� such
plots are reasonably linear and give TK values ranging from
45 to 75 K for the four samples. The deviations below 20 K
for x=1.1 and 1.3% could arise from phonon drag. Values of
TK obtained in these two ways are significantly higher than
TK�6 K,5 which was estimated by fitting resistivity data to
�=��0��1− �T /TK�2� but with considerable uncertainty in the
appropriate value of ��0�. On the other hand, using the fact
that the T2 law normally extends up to 0.1 TK �Ref. 15� gives
TK	40 K-in closer agreement with our estimates from the
TEP.

Although we should be cautious about applying spin
Kondo formulas to a doped semiconductor, PbTe, the obser-
vation of Matthiessen’s rule is consistent with a single-band
metallic picture and minor changes in hole concentration
above x=0.3%. Taking TK=60 K �Ref. 17� does affect some
of the previous conclusions.5,6 For example on the basis of
the measured specific-heat coefficient ��0� and the depth of
the resistivity minimum it was suggested5,6 that only
xef f /x�0.01 of the Tl impurities were degenerate to within
TK=6 K and hence only these were effective Kondo
scatterers. With TK=60 K, xef f /x becomes �0.1 and also the
radius of the charge cloud is smaller, �25 nm, taking
kF=107 cm−1 and m=0.6me, i.e., vF=2 107 cm /s. Accord-
ingly at x=1%, on average there would still be about 10
other Tl atoms within the charge cloud of one impurity, but
because xef f /x�0.1 only one of these would be a Kondo
scatterer. We note that the charge clouds must overlap and be
delocalized at low T �as are the Kondo states in heavy Fer-
mion superconductors� because otherwise they would not
contribute to superconductivity and there would be a residual
��0� in the superconducting state. Such considerations of
charge overlap may make detailed analysis in terms of the L
and � bands of undoped PbTe less straightforward than pre-
viously thought.
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FIG. 3. �Color online� �a� Kondo contribution to the TEP of
Pb1−xTlxTe single crystals with values of x shown in %. The insert
shows T /SK vs T plots used to find TK from the empirical, low T,
law �Ref. 14, SK=AT / �T+0.35TK�. �b� Raw TEP data for the values
of x in % shown. A solid line shows Sd for x=0.2% and dashed lines
show �T for x�0.3%
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Assuming that there is also a narrow peak �kBTK wide in
the DOS for charge Kondo impurities, then the field scale for
magnetotransport effects is larger �kBTK /�B. Also one
would expect a magnetic-susceptibility contribution
��T�=�B

2xef fNAV /kB�T+TK� emu /mole where NAV is
Avogadro’s number, �B, the Bohr magneton. For xef f �0.1x,
this would be undetectable in the available ��T� data5,7 but
might show up in detailed measurements and analysis, like
those made for AlMn alloys.18 There are some indications
that xef f /x could be larger than 0.1. Using the formula3

��0�=0.4128�2kB / �6TK� gives ��0�=0.94 mj /mole /K2 for
x=1% compared with the average slope from the raw experi-
mental data6 of ��0� /x=0.57 mj /mole /K2 /% implying that
xef f /x�0.6. We also note that the measured values of
���0� /���0� are remarkably close to 6�B

2 /�2kB
2 , the value

expected from spin Kondo theory, namely a Wilson ratio of 2
rather than 1 for noninteracting fermions. However for
xef f /x�0.6 it is difficult to understand the T dependence

since the ��T� curves for x between 0.3 and 1.3% are essen-
tially parallel. Although the effective mass and band gap of
PbTe are T dependent,19 it seems unlikely that this would
exactly compensate any 1 / �T+TK� behavior from the Kondo
effect.

In summary, the large TEP of the host material makes the
data analysis less straightforward than for noble-metal-based
Kondo alloys. Using a provisional single-band picture we do
see reasonably clear evidence for a Kondo effect but with TK
a factor of 10 or so larger than the earlier work. Band calcu-
lations of the TEP of PbTe as a function of hole doping might
provide a further test of this conclusion.
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